

Leveraging State Space Models in Long-Range Genomics

Matvei Popov^{*}, Aymen Kallala^{*}, Anirudha Ramesh^{*†}, Narimane Hennouni, Shivesh Khaitan, Rick Gentry, Alain-Sam Cohen

InstaDeep
^{*} Equal contribution [†] Correspondence: a.ramesh@instadeep.com

Motivation

- Regulatory interactions in the genome often span hundreds of Kbp to Mbp. Human Genome is ~3 Billion Base Pairs long!
- Existing models mostly operate on the scale of tens of thousands of base pairs.
 - \bullet Transformer models are constrained by quadratic attention, limiting practical context to \sim 10kbp.
 - \bullet Training directly on >100 kbp sequences is computationally prohibitive for most labs, and data available is limited.
- **Goal**: Find a way to process longer sequences effectively, without needing to train on longer sequences.

State Space Machines (SSMs) for Genomics

• Linear complexity vs. quadratic for transformers.

Fig-3: Zero-Shot Extrapolation (12 to 120 Kbp)

• Implicit positional encoding through hidden states.

This would allow processing longer genomic sequences, without finetuning, as positional embeddings don't go out of distribution!

Experiments

Models & Training. We pre-train 3 models with **50 M params** on maskedlanguage-modeling task using **300 B nucleotides** from InstaDeep's multi-species dataset.

- NTv2 12-layer Transformer (current GLRB SOTA)
- **Caduceus** bi-directional Mamba SSM (+ RC-equivariance)
- **Hawk** Linear Recurrence Unit (LRU) SSM (+ added bi-directionality)

We finetune and evaluate on the **Genomics Long-Range Benchmark** (GLRB). We find that SSMs,

- \bullet Perform comparably to transformer baselines across multiple tasks. \rightarrow Fig-1.
- Can 0-shot extrapolate $10-100 \times$ its training context length (12Kbp to 120Kbp) across multiple tasks, sustaining performance, compared to NTv2 which collapses. \rightarrow Fig-2, 3, 5.
- Can process ultralong sequences (1 Mbp) on a single A100 GPU, aided by a hidden-state transfer mechanism. \rightarrow Fig-4, 5.

Fig-1: GLRB Tasks Results (12 kbp)

Task	NTv2	Caduceus	Hawk
Bulk RNA (R2)	0.52	0.53	-
VEP eQTL	0.72	0.68	0.60
VEP ClinVar	0.75	0.75	0.55
Histone Marks	0.34	0.52	-
B	~	• • • •	

Fig-4: Processing UltraLong Sequences

Figure: Hidden-state transfer enables chunk-wise inference while preserving global context. We perform a linear-scan across our chunks, while performing a parallel-scan within each chunk. This enables efficient processing in memory constrained environments across even ultra-long sequences, allowing >1Mbp.

SSMs perform comparably to SoTA transformers across a range of genomics tasks!

Fig-2: Zero-Shot Extrapolation (12 to 120 Kbp)

Figure: AUROC on VEP eQTLs. Dotted line = 12 kbp training length. SSMs maintain performance with increase in inference sequence length, transformers collapse owing to distribution shift in positional embeddings.

Fig-5: Zero-Shot Extrapolation to 1 Mbp

Implications & Future Work

- SSMs unlock single-pass inference over entire genomic regions (> 1 Mbp).
- Commodity 40–80 GB GPUs suffice, democratizing long-range genomics.
- Next steps:
 - Utilize longer contexts available during inference more effectively.
- SSMs can serve as a foundation for large-scale, democratized comprehensive genome-scale modeling.